Are You Ready to Witness the Future of Data Security?
Platform
Copyright © QuNu Labs Private Limited
Explore Harvest Now, Decrypt Later Attack with expert insights, use cases, and solutions. Learn how Harvest Now, Decrypt Later Attack can enhance your cybersecurity and protect sensitive data.
Explore Harvest Now, Decrypt Later Attacks with expert insights, use cases, and solutions. Learn how Harvest Now, Decrypt Later Attacks can enhance your cybersecurity and protect sensitive data.
Cryptosystems are designed to cope with the worst-case scenarios: an adversary with infinite computing resources can get access to plaintext/ciphertext pairs (and thus could study the relationship between each pair) and know the encryption and decryption algorithms; and can thereby choose plaintext or ciphertext values at will.
Explore Harvest Now, Decrypt Later with expert insights, use cases, and solutions. Learn how Harvest Now, Decrypt Later can enhance your cybersecurity and protect sensitive data.
Explore Harvest Now, Decrypt Later Threats with expert insights, use cases, and solutions. Learn how Harvest Now, Decrypt Later Threats can enhance your cybersecurity and protect sensitive data.
Today, a huge amount of stolen information is lying in foreign databases. They are ready to be exposed in the next few years with the imminent arrival of quantum computers. It’s time for governments and enterprises to step up. They need to be quantum-ready and develop a crypto agility strategy.
Y2Q, the year when quantum computers will become powerful enough to break the current encryption code, is approaching sooner than expected. The moment is dreaded by businesses, governments, and individuals alike because it poses a serious threat to the security of our networks and data.
Today, most cyber threats and attacks go undetected. Quantum cryptography is a boon in this case as it allows firms to understand and detect threats such as MITM attacks, DDoS Attacks, Trojan attacks, and security spoofing.
On December 21, 2022, President Biden signed the Quantum Computing Cybersecurity Preparedness Act, which encourages federal government agencies to adopt technology that protects against quantum computing attacks.
Industries such as banking, healthcare, power grids, and telecom (critical digital infrastructure) are at risk as quantum computers become more powerful, and the potential for systems compromise in these industries continues to grow with every passing day.
The global energy demand is estimated to increase by 50 percent by 2050. The growing energy demand necessitates more devices to regulate energy generation, transmission, and distribution. The present-day grid relies on a vast number of networked devices and sensors that constantly monitor energy inputs and outputs to optimise the production and distribution of energy.
In 2023, financial institutions worldwide faced an alarming rise in ransomware and cyberattacks, with India experiencing a 29% increase in financial sector breaches according to CERT-In. Adding to this challenge is the looming threat of Harvest Now, Decrypt Later (HNDL), a strategy where hackers capture encrypted data today, intending to decrypt it using powerful quantum computers in the near future.
Google’s Chrome team wrote in their blog that they are revising technical standards, implementing and evaluating new quantum-resistant algorithms, and engaging with the broader technology community to ensure a seamless transition.
Quantum computing uses fundamental principles of quantum mechanics to perform complex processing. Quantum cryptography leverages the same principles for advanced data encryption. However, quantum computing and quantum cryptography are not allies. Instead, they stand tall against each other at the crossroads!
Quantum computers use fundamental principles of quantum mechanics to solve complex problems in a matter of seconds (which otherwise would take several years). Once a quantum computer achieves a scale large enough to crack RSA encryption protocols, all of our online data is under threat.
Standard cryptography protects almost everything in our lives, including our personal email and banking, businesses, government entities, the health industry, and public infrastructures. As our world has become increasingly digitised, our exposure to something that can break said cryptography can pronounce disaster if it falls into the wrong hands.
In an era of rapid digital transformation, India’s financial sector is the backbone of the economy, which leverages technology to facilitate banking, securities trading, investment services, and more. However, with this increased digitization comes heightened exposure to cyber risks. To address the growing cyber threats,
Find more information about QNu Labs Guide: Post-Quantum Cryptography (PQC) and How it Works?. Get more Quantum Cryptography Guide from QNu Labs.
Before understanding Quantum Key Distribution (QKD), let us understand quantum cryptography. Cryptography is the process of encrypting and protecting data such that only the person with the right secret key can decrypt it. Quantum cryptography is a process of encryption using properties of quantum mechanics to transmit data securely, making it hack-proof.
Find more information about QNu Labs Guide: Quantum Key Distribution (QKD) and How it Works?. Get more Quantum Cryptography Guide from QNu Labs.
Most of us remember Y2K. The global Y2K project aimed to replace the two-digit year codes with four-digit codes by December 31, 1999, to ensure that computers didn’t think the year was 1900 and bring the world to a halt. We successfully navigated the problem. At the tick of 00:00:01 on January 1, 2000, the world functioned as usual.
The Signal Protocol is a set of cryptographic specifications that provides end-to-end encryption for private communications exchanged daily by billions of people around the world. The team announced on their blog that they are upgrading the X3DH specification to PQXDH, a first step in advancing quantum resistance in the Signal protocol.
As India’s financial ecosystem continues to digitize, the importance of robust cybersecurity cannot be overstated. SEBI’s Cybersecurity and Cyber Resilience Framework (CSCRF) was introduced to address the evolving threat landscape, ensuring that regulated entities remain secure and resilient. However, the emergence of quantum computing is reshaping the cybersecurity narrative.
The lock down has clearly increased workloads to remote, cloud and hybrid environments. The cyber-attacks have just been growing steadily and relentlessly. New victims every day and by the time the impact is understood there is a new ransomware, a new victim impacting organizations across the world. It looks like the hackers are far ahead in the game.
For entities under SEBI regulation, this looming shift means facing the urgent task of future-proofing data security. The current encryption techniques that form the backbone of financial security systems may become vulnerable to quantum attacks, potentially exposing critical information.