Are You Ready to Witness the Future of Data Security?
Platform
Copyright © QuNu Labs Private Limited
Explore Uncertainty Principle with expert insights, use cases, and solutions. Learn how Uncertainty Principle can enhance your cybersecurity and protect sensitive data.
Explore Heisenberg Uncertainty Principle with expert insights, use cases, and solutions. Learn how Heisenberg Uncertainty Principle can enhance your cybersecurity and protect sensitive data.
Superposition is one of the most iconic concepts in quantum physics. The principle says that the particles such as electrons can exist in multiple positions simultaneously. For example, imagine a coin tossed in the air—it is not in a definite state of heads or tails while in the air until it is observed. Similarly, sub-atomic particles in quantum superposition exist in all possible states until they are measured.
If you haven't realized this already, your grade 12 chapters on optics and light is more like a history review than a physics course. I say this because one never reaches the interpretation of light and its duality until towards the end of the book.
The landscape of digital security is constantly evolving and threats loom large. But, the emergence of quantum security provides hope. Quantum security represents a paradigm shift in the way we safeguard our digital infrastructure against increasingly sophisticated attacks.
Before understanding Quantum Key Distribution (QKD), let us understand quantum cryptography. Cryptography is the process of encrypting and protecting data such that only the person with the right secret key can decrypt it. Quantum cryptography is a process of encryption using properties of quantum mechanics to transmit data securely, making it hack-proof.
To address these pertinent questions, the Minister of Electronics & Information Technology proposed the Digital Personal Data Protection Bill, 2023 in Parliament. It received the Presidential nod on 11th August. India has now joined the ranks of developed countries to protect citizens' data and citizens' right to privacy.
Quantum computing (QC) garners a lot of positive press due to its power to solve complex computations several times faster. It is envisioned that QC can be a critical enabler and a strong catalyst to considerably reduce the computational power required to perform complex calculations and boost the future of sixth-generation (6G) communication.
Quantum computing uses fundamental principles of quantum mechanics to perform complex processing. Quantum cryptography leverages the same principles for advanced data encryption. However, quantum computing and quantum cryptography are not allies. Instead, they stand tall against each other at the crossroads!
Find more information about QNu Labs Guide: Quantum Key Distribution (QKD) and How it Works?. Get more Quantum Cryptography Guide from QNu Labs.
Find more information about QNu Labs Guide: Quantum Random Number Generator (QRNG) and How it Works?. Get more Quantum Cryptography Guide from QNu Labs.
Quantum tunnelling is one of the most intriguing phenomena in quantum physics. Tunnelling may appear to have little relevance to everyday life but it is a fundamental process of nature that is responsible for many things on which life itself is dependent.
The new quantum key distribution (QKD) system developed on integrated photonics is based on proof-of-principle experiments. The researchers claim that the new system integrates all components into chips except the laser and detectors. Thus, is has the potential to offer advantages like compactness, low cost, and ease of mass production.
In cybersecurity, where data protection is paramount, traditional cryptographic methods have long been the stalwart guardians of sensitive information. However, as computing power advances, so too do the tools available to potential attackers. In the ever-evolving landscape, the emergence of quantum cryptography offers a promising solution to the challenges of secure communication in the digital age.
Though random numbers are generated in many ways, not all are good enough for cryptographic use. For example, computer-generated random numbers are not truly random. A computer is a machine designed to execute instructions in a predictable and repeatable way. They need assistance from external hardware to produce randomness.
In quantum mechanics, the phenomenon of quantum entanglement stands out as both perplexing and fascinating. It is one of the iconic principles of quantum physics and probably the bedrock of new-age quantum technologies.
Quantum computers use fundamental principles of quantum mechanics to solve complex problems in a matter of seconds (which otherwise would take several years). Once a quantum computer achieves a scale large enough to crack RSA encryption protocols, all of our online data is under threat.
The process of encrypting data is called cryptography. It converts plain text into scrambled text so that someone with the right “key” can read it. Quantum cryptography, by extension, uses the principles of quantum mechanics to encrypt data and transmit it securely.
boAt, an Indian electronics company, reportedly faced a major breach that affected more than 7 million of its customers. Media reports pointed out that personal details like names, email addresses, phone numbers, and even their residential addresses were exposed.
Find more information about QNu Labs Guide for Implementing Quantum-Safe Cryptography. Download our Quantum Cryptography Whitepapers for Free.
Quantum Key Distribution (QKD) is a ground-breaking method of secure communication that harnesses the principles of quantum mechanics. It enables two parties to generate a shared random secret key, known only to them, which can be used to encrypt and decrypt messages.
In computer science and technology, the term “quantum computing” has emerged as a buzzword, capturing the imagination of scientists, engineers, and enthusiasts alike. But what exactly is a quantum computer, and how does it differ from classical computers?
A quantum computer is a computing technology that uses sub-atomic particles and the principles of quantum mechanics to perform exponentially faster computations than existing computers. Quantum computing has many applications in healthcare, such as protein folding. However, the technology also has the power to break today’s encryption protocols that secure data and critical systems.
The safest mode of data exchange using quantum encryption.
At the core of quantum mechanics is the idea that particles, such as electrons and photons, can exist in multiple states simultaneously. Unlike classical physics, where an object can only exist in one state at a time, quantum superposition allows particles to exist in a combination of states.