Are You Ready to Witness the Future of Data Security?
Platform
Copyright © QuNu Labs Private Limited
Explore Encrypted Tunnels with expert insights, use cases, and solutions. Learn how Encrypted Tunnels can enhance your cybersecurity and protect sensitive data.
Quantum computers use fundamental principles of quantum mechanics to solve complex problems in a matter of seconds (which otherwise would take several years). Once a quantum computer achieves a scale large enough to crack RSA encryption protocols, all of our online data is under threat.
QShield™ includes Connect Service, Key Generation, Distribution & Management Service, Messaging Service and Data Exchange & Storage Service.
Cryptosystems are designed to cope with the worst-case scenarios: an adversary with infinite computing resources can get access to plaintext/ciphertext pairs (and thus could study the relationship between each pair) and know the encryption and decryption algorithms; and can thereby choose plaintext or ciphertext values at will.
Find more information about QNu Labs Guide: Post-Quantum Cryptography (PQC) and How it Works?. Get more Quantum Cryptography Guide from QNu Labs.
A quantum computer can process data at an enormous speed. A transaction that takes classical computers weeks to compute can be processed by a quantum computer in seconds. The ability of quantum computers to factor many possibilities simultaneously has severe implications for data privacy. Data attacks with advanced quantum technologies could crack even the most advanced encryption schemes.
Data is the engine of the new economy. The data economy depends on the creation of data and data sharing. This makes data an invaluable asset for nations, enterprises and individuals. The data exchange fuels data harvesting. Companies and individuals are known to harvest data - extract useful information from data sources for their personal benefit.
Find more information about QNu Labs Case Study - Quantum Security for Last Mile Connectivity. Download our Quantum Cryptography Case Studies for Free.
Today, a huge amount of stolen information is lying in foreign databases. They are ready to be exposed in the next few years with the imminent arrival of quantum computers. It’s time for governments and enterprises to step up. They need to be quantum-ready and develop a crypto agility strategy.
Cybercriminals are especially eyeing pharmaceutical companies in view of the COVID-19 pandemic. Indian pharma firms were possibly attacked since they are providing affordable medicines on a large scale and are important in drug discovery and supply chain.
Quantum tunnelling is one of the most intriguing phenomena in quantum physics. Tunnelling may appear to have little relevance to everyday life but it is a fundamental process of nature that is responsible for many things on which life itself is dependent.
Today, most cyber threats and attacks go undetected. Quantum cryptography is a boon in this case as it allows firms to understand and detect threats such as MITM attacks, DDoS Attacks, Trojan attacks, and security spoofing.
Quantum computing (QC) garners a lot of positive press due to its power to solve complex computations several times faster. It is envisioned that QC can be a critical enabler and a strong catalyst to considerably reduce the computational power required to perform complex calculations and boost the future of sixth-generation (6G) communication.
In 2023, financial institutions worldwide faced an alarming rise in ransomware and cyberattacks, with India experiencing a 29% increase in financial sector breaches according to CERT-In. Adding to this challenge is the looming threat of Harvest Now, Decrypt Later (HNDL), a strategy where hackers capture encrypted data today, intending to decrypt it using powerful quantum computers in the near future.
Find more information about QNu Labs Practical Solution for Secure Network in a Quantum Computing Era. Download our Quantum Cryptography Whitepapers for Free.
Find more information about QNu Labs Guide: QOSMOS - Entropy as a Service and How it Works?. Get more Quantum Cryptography Guide from QNu Labs.
Companies and governments around the world are in a race to build the first usable quantum computer. The technology promises to make some kinds of computing problems much, much easier to solve than with today’s classical computers, but it also poses a significant threat to the integrity of encrypted data.
Data sent over public communication channels are secured using cryptography. It protects all kinds of electronic communications as well as passwords, digital signatures, and health records. The advent of quantum computers has put cybersecurity under a state of alarm. Large-scale quantum computers have the power to break public key encryption.
The dynamics of geopolitics change over time; it is not a new phenomenon. Therefore, all data and transactions on the internet are encrypted. The widely used encryption method (RSA protocol) uses encryption keys to securely transmit data globally. An encryption key is a random string of bits used to encode and decode data. Each key is unique and unpredictable.
Industries such as banking, healthcare, power grids, and telecom (critical digital infrastructure) are at risk as quantum computers become more powerful, and the potential for systems compromise in these industries continues to grow with every passing day.
The Signal Protocol is a set of cryptographic specifications that provides end-to-end encryption for private communications exchanged daily by billions of people around the world. The team announced on their blog that they are upgrading the X3DH specification to PQXDH, a first step in advancing quantum resistance in the Signal protocol.
The process of encrypting data is called cryptography. It converts plain text into scrambled text so that someone with the right “key” can read it. Quantum cryptography, by extension, uses the principles of quantum mechanics to encrypt data and transmit it securely.